
Best Practices in SQL

Your Guides:
David Matzdorf & Rahul Agrawal

• Take 5 Minutes

• Turn to a Person Near You

• Introduce Yourself

Let Rego be your guide.

2

Introductions

Let Rego be your guide.

3

Agenda

• Introduction

• IN vs EXISTS

• DISTINCT vs EXISTS

• OBS Filtering

• UNION Queries

• Inline Views

• Subquery Factoring

• Double Dipping

• Recursion

• Analytic Functions

• Working examples

Introduction

4

Let Rego be your guide.

5

IN vs. EXISTS

IN is typically better when the inner query contains a small result set
EXISTS is typically better when the inner query contains a large result set

SELECT SRMR.FULL_NAME
FROM SRM_RESOURCES
SRMR
WHERE SRMR.ID IN (SELECT
TM.PRRESOURCEID FROM
PRTEAM TM)

SELECT SRMR.FULL_NAME
FROM SRM_RESOURCES SRMR
WHERE EXISTS (SELECT 1 FROM
PRTEAM TM WHERE
TM.PRRESOURCEID = SRMR.ID)

vs

Let Rego be your guide.

6

DISTINCT vs. EXISTS

• EXISTS is preferable to DISTINCT

• DISTINCT produces the entire result set (including duplicates), sorts, and then filters out duplicates

 SELECT DISTINCT SRMR.FULL_NAME

 FROM SRM_RESOURCES SRMR

 JOIN PRTEAM TM ON SRMR.ID = TM.PRRESOURCEID

• EXISTS proceeds with fetching rows immediately after the sub-query condition has been satisfied the
first time

 SELECT SRMR.FULL_NAME

 FROM SRM_RESOURCES SRMR

 WHERE EXISTS (SELECT 1 FROM PRTEAM TM WHERE TM.PRRESOURCEID = SRMR.ID)

Let Rego be your guide.

7

OBS Filtering
• Multiple ways to filter based on OBS

• Many rely on complex logic, left joins to inline views, or multiple sub-queries

• Using EXISTS and the OBS_UNITS_FLAT_BY_MODE table provides an easy solution

• Filter by Unit Only, Unit and Descendants, or Units and Ancestors

 SELECT SRMR.FULL_NAME

 FROM SRM_RESOURCES SRMR

 WHERE (:OBS_ID IS NULL OR

 EXISTS (SELECT 1

 FROM OBS_UNITS_FLAT_BY_MODE OBSM

 JOIN PRJ_OBS_ASSOCIATIONS OBSA ON OBSM.LINKED_UNIT_ID = OBSA.UNIT_ID AND
 OBSA.TABLE_NAME = 'SRM_RESOURCES'

 WHERE OBSM.UNIT_ID = :OBS_ID

 AND OBSM.UNIT_MODE = NVL(:OBS_MODE, 'OBS_UNIT_AND_CHILDREN')

 AND OBSA.RECORD_ID = SRMR.ID))

Let Rego be your guide.

8

UNION Queries

• UNION queries perform poorly as they scan through the same data multiple times

• Require any logic changes to be made in multiple locations
SELECT CODE, NAME, SUM(FORECAST_COST) FORECAST_COST, SUM(BUDGET_COST) BUDGET_COST

FROM (SELECT INVI.CODE, INVI.NAME, FP.TOTAL_COST FORECAST_COST, 0 BUDGET_COST

 FROM INV_INVESTMENTS INVI

 JOIN FIN_PLANS FP ON INVI.ID = FP.OBJECT_ID AND INVI.ODF_OBJECT_CODE = FP.OBJECT_CODE

 WHERE FP.IS_PLAN_OF_RECORD = 1 AND FP.PLAN_TYPE_CODE = 'FORECAST'

 UNION ALL

 SELECT INVI.CODE, INVI.NAME, 0 FORECAST_COST, FP.TOTAL_COST BUDGET_COST

 FROM INV_INVESTMENTS INVI

 JOIN FIN_PLANS FP ON INVI.ID = FP.OBJECT_ID AND INVI.ODF_OBJECT_CODE = FP.OBJECT_CODE

 WHERE FP.IS_PLAN_OF_RECORD = 1 AND FP.PLAN_TYPE_CODE = 'BUDGET')

WHERE 1=1

GROUP BY CODE, NAME

Let Rego be your guide.

9

UNION Queries

• Most UNION queries can easily be replaced with logic
SELECT INVI.CODE, INVI.NAME

, SUM(CASE WHEN FP.PLAN_TYPE_CODE = 'FORECAST' THEN FP.TOTAL_COST END) FORECAST_COST

, SUM(CASE WHEN FP.PLAN_TYPE_CODE = 'BUDGET' THEN FP.TOTAL_COST END) BUDGET_COST

FROM INV_INVESTMENTS INVI

JOIN FIN_PLANS FP ON INVI.ID = FP.OBJECT_ID AND INVI.ODF_OBJECT_CODE = FP.OBJECT_CODE

WHERE 1=1

GROUP BY INVI.CODE, INVI.NAME

• Only use UNION when joining data from multiple tables

Let Rego be your guide.

10

Inline Views
• Inline views can be very beneficial but can severely affect performance

• LEFT JOINs to large inline views is typically not a good idea
 SELECT SRMR.FULL_NAME, SUM(AV.SLICE) AVAIL, AL.ALLOC
 FROM SRM_RESOURCES SRMR
 JOIN PRJ_BLB_SLICES AV ON SRMR.ID = AV.PRJ_OBJECT_ID AND AV.SLICE_REQUEST_ID = 7
 LEFT JOIN (SELECT TM.PRRESOURCEID, SUM(AL.SLICE) ALLOC
 FROM PRTEAM TM
 JOIN PRJ_BLB_SLICES AL ON TM.PRID = AL.PRJ_OBJECT_ID
 WHERE AL.SLICE_REQUEST_ID = 6
 AND AL.SLICE_DATE BETWEEN '01-JAN-14' AND '30-JUN-14'
 GROUP BY TM.PRRESOURCEID) AL ON SRMR.ID = AL.PRRESOURCEID
 WHERE AV.SLICE_DATE BETWEEN '01-JAN-14' AND '30-JUN-14'
 GROUP BY SRMR.FULL_NAME, AL.ALLOC
 ORDER BY SRMR.FULL_NAME

• Will talk through some examples to demonstrate alternatives

Let Rego be your guide.

11

Subquery Factoring – WITH clause
• Simplify complex queries

• Reduce repeated table access by generating temporary datasets during query execution

• Can be used as an inline view or a table

Let Rego be your guide.

12

Double Dipping
• Accessing the same data twice
• Forecast and Budget totals

• Availability vs Allocation vs ETC vs Actuals

• Using the WITH clause to recurse

• Get OBS Full Path

Let Rego be your guide.

13

Recursion

Avoid SELECT * – Retrieve only the columns you actually need.

Use Appropriate Joins – Choose INNER, LEFT, or RIGHT joins based on actual requirements.

Filter Early – Apply WHERE and JOIN conditions to reduce data sets before grouping or ordering.

Write Readable Queries – Use consistent formatting, meaningful aliases, and clear indentation.

Test with Realistic Data Volumes – Ensure performance and behavior hold up in production-sized
data.

Leverage Set-Based Operations – Avoid row-by-row (cursor) processing when possible.

Use Proper Indexing – Match indexes to query patterns to improve performance.

Let Rego be your guide.

14

Best Practices

Analytic Functions

15

Let Rego be your guide.

16

What Are Analytic Functions

Used to compute aggregate values based on a group of rows

Similar to aggregate functions but return multiple rows

Can only appear in the SELECT or ORDER BY clause

Used to compute cumulative, moving aggregates

Operate with OVER() and optional PARTITION BY / ORDER BY clauses to define the
calculation window

Let Rego be your guide.

17

Why Use Analytic Functions

Preserve Detail – Return aggregated metrics while keeping all individual rows visible.

Enhanced Analysis – Enable calculations like rankings, running totals, and moving
averages directly in SQL.

Performance Gains – Reduce the need for complex self-joins or multiple subqueries.

Flexible Windows – Allow calculations over dynamic ranges using PARTITION BY and
ORDER BY

Accurate Insights – Handle complex reporting needs (e.g., “top N per group” or period-
over-period comparisons) with minimal SQL complexity

Let Rego be your guide.

18

Available Functions

• AVG

• CORR

• COUNT

• COVAR_POP

• COVAR_SAMP

• CUME_DIST

• DENSE_RANK

• FIRST

• FIRST_VALUE

• LAG

• LAST

• LAST_VALUE

• LEAD

• LISTAGG

• MAX

• MEDIAN

• MIN

• NTH_VALUE

• NTILE

• PERCENT_RANK

• PERCENTILE_CONT

• PERCENTILE_DISC

• RANK

• RATIO_TO_REPORT

• REGR_

• ROW_NUMBER

• STDDEV

• STDDEV_POP

• STDDEV_SAMP

• SUM

• VAR_POP

• VAR_SAMP

• VARIANCE

Let Rego be your guide.

19

Selecting Specific Records
• ROW_NUMBER – Assign a unique sequential value to each row

• LAG/LEAD – Finds rows a number of rows from the current row

• FIRST_VALUE/LAST_VALUE – Finds first or last value in an ordered group

• RANK/DENSE_RANK – Rank items in a group

• SUM – Compute running totals

• Most recent status report

Let Rego be your guide.

20

Summing

• SUM – Calculate total allocations

• RATIO_TO_REPORT – Calculate percentage of total allocations

• SUM – Calculate total allocation hours

• SUM ORDER BY – Running allocation hours

Let Rego be your guide.

21

Window clause

• BETWEEN … AND

• UNBOUND PRECEDING

• UNBOUND FOLLOWING

• CURRENT ROW

• X PRECEDING OR X FOLLOWING

SQL Tuning 2025 Queries.txt

Master Clarity with
Rego University

22

Let Rego be your guide.

Earn Certifications in
Administration, Leadership,

and Technical Proficiency

Rego is excited to continue our certification programs, designed to enhance your expertise in Clarity
administration, leadership, and technical skills. These certifications provide hands-on experience and
knowledge to excel in your career.

23

Certification Requirements:

Completion: 12 units per certification track

Important Reminder:

To have your certification credits tracked, ensure you complete the class surveys in the app after each
session. This step is critical for certification progress.

Let Rego be your guide.

Elevate Your Professional Expertise with Rego University Certifications

Eligibility: Open to all Rego University attendees

24

Questions?

Surveys

Let Rego be your guide.

25

Please take a few moments to fill out the class survey.
Your feedback is extremely important for future events.

Instructions for PMI credits
• Access your account at pmi.org

• Click on Certifications

• Click on Maintain My Certification

• Click on Visit CCR’s button under the Report PDU’s

• Click on Report PDU’s

• Click on Course or Training

• Class Provider = Rego Consulting

• Class Name = regoUniversity

• Course Description

• Date Started = Today’s Date

• Date Completed = Today’s Date

• Hours Completed = 1 PDU per hour of class time

• Training classes = Technical

• Click on I agree and Submit

Let Rego be your guide.

26

Thank You For Attending Rego University

Phone
888.813.0444

Email
info@regoconsulting.com

Website
www.regouniversity.com

Let us know how we can improve!
Don’t forget to fill out the class survey.

mailto:info@regoconsulting.com
http://www.regoconsulting.com/

Use RegoXchange.com for instructions and how-tos.

Talk with your account managers and your
Rego consultants.

Connect with each other and Clarity experts at
RegoGroups.com.

Sign up for webinars and join in-person Rego groups
near you through at RegoConsulting.com

Join us for the next Rego University!

Let Rego be your guide.

27

Continue to Get Resources and Stay Connected

1

2

3

4

5

https://xchange.regoconsulting.com/
https://regogroups.com/
https://regoconsulting.com/
https://regouniversity.com/

	Slide 1
	Slide 2: Introductions
	Slide 3: Agenda
	Slide 4: Introduction
	Slide 5: IN vs. EXISTS
	Slide 6: DISTINCT vs. EXISTS
	Slide 7: OBS Filtering
	Slide 8: UNION Queries
	Slide 9: UNION Queries
	Slide 10: Inline Views
	Slide 11: Subquery Factoring – WITH clause
	Slide 12: Double Dipping
	Slide 13: Recursion
	Slide 14: Best Practices
	Slide 15: Analytic Functions
	Slide 16: What Are Analytic Functions
	Slide 17: Why Use Analytic Functions
	Slide 18: Available Functions
	Slide 19: Selecting Specific Records
	Slide 20: Summing
	Slide 21: Window clause
	Slide 22: Master Clarity with Rego University
	Slide 23
	Slide 24
	Slide 25: Surveys
	Slide 26: Thank You For Attending Rego University
	Slide 27: Continue to Get Resources and Stay Connected

