
Administrator | Advanced

Your Guides:
Chris Ciavarella , Rajini Mamidi

• Introduction

• Objects, Attributes and Views/Fields

• Studio and Modern UX

• Introduction to SQL

• Lookups, Queries and Portlets

• Introduction to Workflows (Processes)

• XOG (XML Open Gateway)

• REST API

Let Rego be your guide.

2

Agenda

Introduction

3

Objects, Attributes and
Views/Fields

5

• Studio is the interface used to create new or modify existing components and
customize the UI to meet the needs of your organization.

• A full license is required to use this functionality, and users must have a variety of
related security rights (Administration-Studio, Create/Edit Objects, Portlets,
Pages, etc.).

• Studio is accessed via the Administration menu.

Clarity Studio

• Objects are the major functional components of Clarity.

• The properties of objects are defined by the attributes (fields).

• Each object that is enabled for modern user experience has a standard blueprint associated.

• Object subpages (links), page layout, views make up your configured instance of Clarity in
Classic. Whereas blueprints, views, and flyout configurations make up the configuration in
modern user experience.

• In addition to the stock objects delivered with the system, you can create custom objects.
Custom objects are essentially tables inside the database that begin with “ODF_CA”

• Custom Investment Types (CITs) of objects can also be created. These are an extension of the
investment object and have additional capabilities such as Cost Plans, Roadmaps, and
Hierarchies.

• Use the default objects or create custom objects and sub-objects to manage information for
specific business needs.

Objects

• Each object has distinct pieces you can configure
• Attributes
• Screen configuration – layouts (Classic UI) or blueprints (Modern UX)
• Modules (tabs) on blueprints
• Views
• Flyout Configurations

• Things to remember
• You can only delete Custom Attributes

• Attributes need an API Attribute ID to show in the Modern UX
• A CIT (investment extension objects) cannot be deleted

• Adding more than 100 custom attributes to a single custom object may impact performance
• A hierarchy with a maximum of three levels of objects can be created, and allow child

objects to inherit properties and access rights from parent objects

Objects (continued)

Objects: Types

• Stock Objects
• Primary Standard Objects

• Investment
• Idea

• Project
• Task

• Team
• Resource

• Company
• Application

• Custom Objects
• Master Objects

• Custom Investment Types (CIT) - Investment Object Extension

• Sub-Objects

• The Investment object is a special component that provides the ability to define
attributes one time and share them across select OOTB objects.

• These objects “inherit” attributes from the Investment object:
• Project, Idea, CITs, Other Work, Application, Asset, Product, Service

• Streamlines the creation process and ensures consistency across objects.

• You may re-label attributes on shared objects if needed (ID remains the same).

• Attributes defined at the investment level are available to the stock objects noted
above but are not required.

• You must make updates to Investment attributes at the Investment level.

Objects: Investment Object

• Attributes are the fields on an object that store information.

• The attributes of each object are available on the Attribute screen within the
object.

• Many attributes are delivered out-of-the-box, but you can create additional
attributes using Studio.

• Once created, you can organize and place attributes:
• Classic UI: on views and portlets and use for reporting

• Modern UX: Views and Blueprints

• Example: “Start Date” is an attribute of the project object

• Details on the various data types can be found in the Studio Developer Guide.

Attributes

• When creating attributes the following data types are available:
• String (2000-character maximum)
• Large String – Plain Text (stored as a CLOB in the database)
• Large String – Rich Text (stored as HTML and has a Plain Text counterpart for reporting)

*(Only Available in MUX)
• Number
• Calculated
• Money (includes currency code)
• Boolean (checkbox)
• Date
• Lookup (related lookup needs to be available - create prior to creating attribute)
• Multi-Valued lookup (same note above applies)
• Attachment
• Time-varying
• URL (Links to actual data)

Attribute Data Types

• A Calculated attribute displays a dynamic, read-only value.

• Values are calculated from other existing attribute values.

• Values are calculated every time the user accesses or refreshes the page.

• These values are not stored in the database.

• Calculated attributes can only read the following data types :
• Number: Use this data type to calculate a number value like a sum or average
• String: Use this data type to concatenate two or more text values

• Example: concatenate the value of the attribute “created_by” and the constant “2007” to produce a result
of “ssmith 2007”

• Date: Use this data type when you need to calculate dates using basic arithmetic or to
provide the current date

• NOTE – You cannot delete source attributes used in a calculated attribute!

Calculated Attributes

• Clarity provides the ability to create your own numbering/naming scheme for
object instances (PRJnnnnn, APPnnnnn, etc.).

• The scheme can be numeric or a mixture of characters and numbers.

• Two out-of-the-box attributes that are commonly auto-numbered are “Name”
and “ID”

• Configuration is done via the Auto-numbering tab on the attribute detail.

Attributes: Auto-Numbering

Attributes: Exercise
• Create a new custom sub-object to the project object.

• Administration -> Objects
• Click New and fill out the required fields

• Select the following checkboxes if they apply:

• Copy Enabled: Specifies that copies can be made of the object instances.

• Export Enabled: Specifies that object instances can be exported to XML.

• API Enabled: Allows object to show in the New UX.

• Template Enabled: Allows for this object to have templates defined

• Include in Datawarehouse: Enabled the object to be available in the DWH.

• Object Extension: Used to create custom Investments, by associating to the Investment Object.

• View All Enabled: Specifies that the object instances can have a view containing all properties, sub-object lists, and page portlets that
can be personalized on a single page.

• Event Enabled: Specifies that the process engine is notified of object instances that are created or updated. (If a process needs to get
driven off the object)

Object Name: Meaningful
name summarizing the object
function
Object ID: Use a standard
naming convention; many start
with a customer ID + “_”
(special characters and spaces
should not be used in IDs)

Master or Subobject
• Choose Master if object is to be

standalone
• Choose Subobject if object is to be

accessed via another object (1 to many
relationship)

• Choose the Master object by
using the browse button

• Notice the default fields included in the newly created object.

Attributes: Exercise (cont.)

Created By and Created Date: Keep track of who and when the
record was created.

Last Updated By and Updated By: Keep track of the last person
who updated the record and when.
** Note: Outside of custom objects there are OOTB jobs /
processes that will skew the results of the last updated by and
date fields, as the application often makes updates to the record.

Page Layout: Each object defaults to a standard layout with tabs
such as Properties, Processes, and Audit. This can be customized
by adding a new custom page layout. (Details later on)

Name and ID: Used to identify the record; Name can be
repeated multiple times while the ID has to be unique. Auto-
numbering is often used to force that uniqueness and
standardization.

• Add 3 or 4 attributes of different varieties to your new custom object.
• Click New and fill out required fields as well as Data Type

Attributes: Exercise (cont.)

Attribute Name: Name of attribute (display
name can be changed later in fields if need be)

Attribute ID: Unique ID for attribute (spaces
and special characters not allowed)

Description: Meaningful explanation for
attribute usage

Data Type: Type of attribute
Lookup: Only shows up for “Lookup” and
“Mutli Valued Lookup” types

Default: Default value to populate attribute
with (if applicable)

API Attribute ID: Required for field to show in
New UX. Only available if Object is API Enabled

• Select the following checkboxes if they apply:
• Populate Null Values with the Default: If an attribute is added after instances have already

been created, this will populate the existing records with the default value

• Value Required: Specifies whether a value is required for the attribute

• Presence Required: Specifies that the attribute always appears in the Edit Properties view

• Read-Only: Specifies that a user cannot make changes to the value in the attribute

• Include in the Datawarehouse: Include the field in the DWH schema

• Attribute API Alias: Alias to enable the attribute through REST API

Attributes: Exercise (cont.)

• Auto-number the ID attribute:
• Select the auto-numbering tab

• Check the “Auto-numbered” box and click “Save”

• Select Scheme -> Edit

Attributes: Exercise (cont.)

• The default segment type is numeric, but this can be modified to include text
characters as well.

• Select “New” and set Type of Segment = “Text” and type the text value into
“Value” field.

• Click Save and Return.

Attributes: Exercise (cont.)

• The new scheme defaults into the order it was entered. To reorder and have the
text in front, select “Reorder” and move the segments accordingly.

• Select “Save and Return.”

Attributes: Exercise (cont.)

Note the new numbering scheme

• Fields are representations of the available attributes which are placed onto
screens and list views.

• Field names can be different than the attribute (relabeled).

• They provide additional options and allow flexibility in view configuration:
• Browse vs Pull-Down (for lookups)

• Hints and Tooltips

• Size of the field on the screen and text boxes

• Default value

• Required (even if NOT required on the attribute definition)

• List alignment

• List column width

• List word wrapping

Fields and Views

• Fields can be added or removed on the Create and Edit screens.

Fields: Adding to a Screen

Fields: Adding to a List

• Fields can also be added or removed on the List view.

• Consider the following List view options to improve the user experience:
• Rows per Page

• Allow Configuration

• Filter results

Fields: List Options

• Using the new object do the following:
• Modify field “ID” to make read-only

• Navigate to Administration -> Objects -> <Object Name> -> Attributes

• Select the ID field and open. Set a default value. Click Save and Return.

Fields: Exercise

• Select “Views” tab

• On the General -> Properties line click the “Fields” link

• Click on the properties icon next to the “ID” field

Fields: Exercise (cont.)

• Select the “Hidden” checkbox

Fields: Exercise (cont.)

• Make one of the new attributes “Required” within the field properties.
• Navigate to Administration -> Objects -> <Object Name> -> Attributes

• Select a field (newly created) and open properties.

• Select the “Value Required” checkbox and click “Save.”

Fields: Exercise (cont.)

• Add a hint for entering one of the values and place it below the field.
• Navigate to Administration -> Objects -> <Object Name> -> Views

• From the General -> Properties line click on “Fields”

• Choose a field that you want to add some verbiage to help the user when entering
information.

• Add verbiage to the “Hint” text box and choose a position.

Fields: Exercise (cont.)

• Object actions are individual operations that can be selected to be done from
either the list or properties view within an object instance.
• Examples of actions are the ability to run a report (only Business Objects), initiate a process

instance, copy an object instance, etc.

• Each object has some default actions available to them.

• To utilize an action the action menu needs to be configured.
• Within an object this is located within the “Views” tab and by clicking on “Actions Menu” for

the specific view being configured

• Actions and the associated menus can be renamed as needed.

Actions

Studio and Modern UX

32

• The Modern UX Administration is more functional than technical. It can be
managed by any user with a good functional understanding of Clarity.

• While some administration activities are done in the Classic Clarity UX,
others are available only in the Modern UX.

• Administrators must have a good understanding of what they want to
expose and to whom they wish to make functionality available to make
best use of the Classic and New functionality.

• Studio Objects and Attributes are available in the Modern UX, they only
need an API Field ID to be configured.

Let Rego be your guide.

33

Administration in the Modern UX

• For custom attributes to be able to be
viewable/editable in the Modern UX,
their API Attribute ID must be
populated.

• Access your custom attributes on the
object to which they belong, and
populate this value to ensure the
attributes may be utilized in the
Modern UX.
• Go to Administration -> Objects -> Select

the appropriate object
• Select Attributes Tab
• Select Desired Attribute
• Populate API Attribute ID and Save

Let Rego be your guide.

34

Enabling Attributes for the Modern UX

Note: You must API-Enable OBS attributes for them to
be utilized in filters, views, etc.

• Blueprints
• Modules
• Views
• Channels
• Actions
• Business Rules

• Attributes

• Field Level Security

• Pages (Dashboards)

• User Personalization
• Views
• Picklists

Let Rego be your guide.

35

Basic Components Modern UX

• Blueprints
• Properties

• Visuals

• Modules

• Rules

• Actions

• Channels

• Canvas

• Create from Template

• Views

• Flyouts

Let Rego be your guide.

36

Configure Modules

• Blueprints are configurable layouts in the New User Experience.

• Blueprints can be used (might vary depending on version):
• Projects

• Ideas

• Custom Investments

• Custom Objects

• Hierarchy

• Roadmaps

• Agreements

• Pages

• Depending on the Blueprint type options might vary, but in general Blueprints
can:
• Allow admins to customize the look and feel of Edit Views, Add Modules, Add Channels

• Impact how certain investments are created from templates

• Implement Rules to enforce validations like required fields in Objects and Subobjects (16.0.3)

• Configure Actions to run processes within MUX

• Produce attribute updates from user inputs

• Generate action items from user inputs

37

Blueprints Overview

Configuring Blueprints

38

• To have the ability to view and update
Blueprints a user requires the following
security rights:
• Blueprint – Create Copy, Blueprint - Delete –

All, Blueprint – Edit – All, and/or Blueprint –
View – All

1. Once in the New User Experience, Click
on the ‘Administration’ Icon.

2. Click on the ‘Blueprints’ tile:
• Here you will see the list of Blueprints create

in the system

39

Navigation

• Here you will see a list of the Blueprints that
have been created in the system:
• The list is filterable; can filter by Blueprint type (e.g.,

Idea vs. Project vs. Custom Investments)

• There are multiple options for a Blueprint:
• Copy – Create a new Blueprint which is a one for one

copy

• Rename – Rename the Blueprint

• Delete – Delete the Blueprint

• Make Default
• Any newly created Idea or Custom Investment will inherit this

Blueprint.

• Projects not created from a template will inherit this
Blueprint

40

Blueprint List View

• "Has Draft" indicates if there are unpublished changes to the blueprint.

41

Blueprint List View cont.

• On Project Blueprints, following main features can be defined.
• Properties– This is the main details or properties page for the Project/Custom Investment Type. Here you

can add or remove fields and sections. You can also move and resize fields by dragging and dropping them.

• Visuals – These are the icons on the Project Tiles. There can be a maximum of 3, but there is a minimum of 1
required. Currently, these are only available for the Project Blueprints.

• Modules – These are the supporting “pages” that can be added or removed from the Project. The modules
include functionality like Financials, Teams, Risk, Issues, Changes, etc. Currently, these are only available for
Project Blueprints.

• Rules – These are business rules that can govern the data and its visibility.

• Actions – These are links to trigger active processes associated with the object.

• Create from Template – This lets users ensure all required data is captured before project is created.

42

Properties

• Fields Pane

• Location of the fields you can add to the sections of your
Details

• By default, it contains a list of out-of-the-box Project and
Investment fields

• Custom fields and sub-objects can be added and will be covered
later

• Fields that already exist on your Blueprint are greyed out

• Click the Add Section button to add a new section to the
Details

• Fields

• Add or Move a field by simply dragging and dropping the
field into a section

• Remove a field by clicking the X in the top right-hand
corner of the field

• Resize the field by dragging the bottom right-hand corner
of the field

43

Properties

• Details Options:
• Exit - Allows you to save your changes

without Publishing the new view to Users

• Discard Edits – Removes the change you
have made

• Publish – This Publishes the new view the
users for the Projects associated to this
Blueprint

44

Properties cont.

• Visuals are displayed on the Project
Tiles.

• Currently, there are 10 out-of-the-box
Visuals to choose from.

• Add or Move a Visuals by simply
dragging and dropping it.

• Remove a Visual by clicking the X in
the top right-hand corner of the icon.

45

Visuals (Projects Only)

• Once inside of a Project, Modules are displayed across the top.

• The first 4 Modules will also be displayed on the Project Tile for direct navigation to that Module.

• There are several core Modules which are not configurable and provide project functionality like financials,
staff, task, etc.

• The sub-object modules can be configured for the following:

o Enable Properties Navigation – "Name" attribute of sub-object instance is hyperlinked to Properties page

o Enable Quick Create – Create new records in the grid using the '+' button

o Enable Create Dialog – Create new records with button that loads a modal popup window

o Show in Details Flyout – Visible as a tab in the details flyout for of the parent instance

• In addition to the core Modules, there are configurable Channels and the ability to add custom sub-objects.

46

Modules

• Channels are configurable Modules that can
be directed to other internal PPM locations,
external applications, or external URLs.

• Users can stay directly in their Project and
get the additional pertinent information.

• Configuration:
• Channel Name – The name displayed to the user

• Channel URL – The URL where the channel will
navigate

• Referrer URLs – These are additional URLs need
for navigation like authentication

• The URL fields accept various parameters to
send as query strings to other apps and/or
options to interact with the Classic UI.

47

Modules – Channels

• Canvas provides a consolidated
view.

• Canvas layout is configurable
with various widgets.

• Users can export to PDF.

• Different views can be
configured per persona.

48

Modules – Canvas

• Custom sub-objects of Projects, Ideas
or Custom Investments as a Module in
the New User Experience.

• Check the “API Enabled” checkbox on
the existing custom object or a new
custom object.
• Once this is checked and saved, it can’t

be undone

• After saving, an API Attribute ID will be
automatically created for the object
and it will be available as a Module.

49

Modules – Custom Sub-Objects

• Navigate to Modern UX → Administration
• Select on the Blueprints tile
• Search for the blueprint you want to create

logic on
• Select Edit
• Navigate to the Rules tab
• Select New Rule

Let Rego be your guide.

50

Rules Engine
• In the Modern UX there is now the option to

create logic for hiding certain modules or
sections based off attribute values.

• Easy way to create a flexible and dynamic
user experience using views.

Example: Demand Management process

Let Rego be your guide.

51

Rules Engine

• Rules can now be defined to
perform an automatic update to an
attribute based on a manual
update to a different attribute
(think System Actions in
processes).

• Rules can also be defined to
generate Action Items to
individuals.

• Navigate to Modern UX → Administration

• Select on the Attributes tile

• Filter for object

• Mark the attribute secure

• Access Edits and Access View is required.

Let Rego be your guide.

52

Attributes - Field Level Security
• In the Modern UX there is now the option to

secure attributes.

• Easy way to avoid users from seeing certain
attributes in their configurable list view.

Let Rego be your guide.

53

Attributes - Investment Parents

• We can define the allowed
Parent investment types.

• Navigate to Modern UX → Pages
• Select on the + icon to create a new row
• Populate a Name and Id with relevant information.

• Example: Portfolio List
• Navigate to Administration → Blueprints
• Filter Type → Page
• Copy Standard Page
• Edit Copied version to relevant name
• Navigate back to Pages
• Select new blueprint and add Channel
• Input new Name and Address for Channel.

• Example:
claritytest.com/niku/nu#action:pfm.portfolioList&puiFull
screen=on

Let Rego be your guide.

54

Pages and Dashboards
• In the Modern UX there is a new option to

display portlet dashboards called Pages.

User Personalizations - Views

55

• In the Classic UX, Administrators may save configurations to list views and
filters, to ensure users see the right fields in view.

• Similar functionality is open to users in the Modern UX.

• Mini visualizations called widgets are also possible in Modern UX.

Let Rego be your guide.

56

Saving Views and Filters (1)

Saving Views and Filters (2)

To save a view (continued):

• Once the filter and fields are
added, use the View menu in the
upper right corner to select Save
As to Save the View.

• Enter a name for the View, and
click Save

Let Rego be your guide.

57

1 2

• Views can be shared and
recommended by
administrators as defaults for
users

• Once the View is Saved, End

Users may then search for

and apply the view

applicable to them.

Let Rego be your guide.

58

Saving Views and Filters (3)

• Instruct users to search for
and apply the view using the
View menu.

• The new view will now be applied. Saved Filters with desired fields, filters and flyout
configuration.

Let Rego be your guide.

59

Saving Views and Filters (4)

• There is no security right associated with saving views.

• This means that any end user can save a view that others will see. If
everyone starts doing this, the list of views can become quite long.

• To limit scrolling through a long list of views, end users may use the Search
functionality to search for and more easily locate the view you’re asking
them to apply.

Let Rego be your guide.

60

Notes on Saved Views

User Personalizations - Picklists

61

• Picklists are similar to Static Lookups, but can be added by users on the
Modern UX without depending on Admins/Clarity Studio.

• They are only visible in Modern UX and under certain cases like Roadmaps
or Tasks, the values are specific to that Investment or Roadmap allowing for
additional levels of personalization.

Let Rego be your guide.

62

What are Picklists?

• Navigate to an Object’s List
View that supports Picklists.

• Click on the gear icon and
select “Manage Picklists.”

Let Rego be your guide.

63

Creating a Picklist

• Once the “Manage
Picklists” popup comes up,
select “New Picklist.”

Let Rego be your guide.

64

Creating a Picklist

• Provide a “Picklist Name.”

• Provide values by selecting
“Add Choice.”

• Additionally, you can
choose a color similar to
Classic UI buckets.

• Once you are finished click
on “Done.”

Let Rego be your guide.

65

Creating a Picklist

• The Picklist and values are
now available.

Let Rego be your guide.

66

Creating a Picklist

Introduction to SQL

67

• SQL stands for Structured Query Language.

• SQL is an ANSI (American National Standards Institute) standard.

• SQL is semantically easy to understand and learn.

• SQL lets you access and manipulate databases and is great for performing the
types of analysis and aggregations normally done in Excel.

• SQL allows you to traverse much larger datasets and multiple tables at the same
time.

What Is SQL?

• A database is an organized collection of data.

• Tables are part of what makes up a database and are like the layout of
spreadsheets.

• Tables are more formalized inside a database with each column having a unique
identifier as its heading.

• Within databases, tables are organized in schemas.

• Schemas are defined by usernames, whereas the tables related to that schema
will be loaded under it.
• e.g. Clarity uses NIKU as the default schema in which the related tables reside

What Is a Database?

• Some common uses of SQL are:
• To extract ad-hoc data

• As a basis for NSQL in portlet writing

• To get data within a process for data manipulation

• Clarity Data Model
• Knowing the Clarity data model is half the battle to grabbing the data you need

• Three main areas where data is stored:
• Core Tables (Real Time): Investment, Resource, Timesheet

• Time Slice Tables: Houses summarize data by daily, weekly, monthly, etc.

• DataMart Tables: Provides summary and rollup data

Using SQL in Clarity

• SQL is NOT case sensitive; SELECT is the same as select.

• Some database systems (Oracle) require a semicolon at the end of each SQL
statement .

• There are two required ingredients in any SQL query: a SELECT statement and a
FROM statement—and they must be in that order.
• SELECT indicates which columns you’d like to view, and FROM identifies the table that they

live in

• Column names should be separated by commas in the query.

• If you want to select every column in a table, you can use * instead of the column
names.

Basic SQL Syntax

• The following statements will extract all rows from a table based on the columns
selected:

• SELECT column_name,column_name
FROM table_name;

• SELECT * FROM table_name;

Basic SQL Syntax (cont.)

• To further limit the results returned from a query use the WHERE clause:
• SELECT column_name,column_name

FROM table_name
WHERE column_name operator value;

• Operators in the WHERE clause

Basic SQL Syntax (cont.)

Operator Description

= Equal

<> Not equal. Note: In some versions of SQL this operator may be written as !=

> Greater than

< Less than

>= Greater than or equal

<= Less than or equal

BETWEEN Between an inclusive range

LIKE Search for a pattern

IN To specify multiple possible values for a column

• Write a select query to pull all the resources from the system and their
associated username.

a. Start with a select from the resource table
 select r.full_name
 from srm_resources r

b. Add a join to the user's table
 select r.full_name
 from srm_resources r
 join cmn_sec_users u ON u.id = r.user_id

c. Add the username column from the user's table
 select r.full_name, u.user_name
 from srm_resources r
 join cmn_sec_users u ON u.id = r.user_id

Query Exercise #1

• Table Aliases
• Improve readability of SQL queries

• Use meaningful table aliases

• Allow queries to be easily created/modified
• Improve performance by eliminating the need for the database to search the tables for the

reference column

• e.g.,
 SELECT column_name1, column_name2
 FROM srm_resources res

• In the above example “res” is the alias and will be used to reference the table
“srm_resources” throughout the rest of the query.

SQL Aliases

• Database columns can be renamed in a SELECT statement as such:
• SELECT user_name as user FROM cmn_sec_users

• In the above example the column will be displayed in the results as “user”

• Note that the keyword “as” is implied and therefore not required

• You can also display a column in a more descriptive way with upper/lowercase
and spaces. e.g.,
• SELECT user_name as “User Name”, email as “Email Address”

FROM cmn_sec_users

• The double quotes ARE REQUIRED when you want to include spaces and lowercase text

• The “as” keyword is optional here as well

SQL Column Names

• Joins
• Clauses used to combine rows from two or more tables, based on common fields between

them

• Types
• INNER JOIN: Returns all rows when there is at least one match in BOTH tables

• LEFT JOIN: Return all rows from the left table, and the matched rows from the right table

• RIGHT JOIN: Return all rows from the right table, and the matched rows from the left table

• FULL JOIN: Return all rows when there is a match in ONE of the tables

SQL Joins

• Inner Join

SELECT *
FROM TableA A
INNER JOIN TableB B ON A.Key = B.Key

SQL Joins

• Outer Join

SELECT *
FROM TableA A
FULL OUTER JOIN TableB B ON A.Key = B.Key

SQL Joins

• LEFT OUTER JOIN

SELECT *
FROM TableA A
LEFT OUTER JOIN TableB B ON A.Key = B.Key

SQL Joins

• DISTINCT Statement
• In a table, a column may contain many duplicate values, and sometimes you only want to

list the different (distinct) values

• The SELECT DISTINCT statement is used to return only distinct (different) values

• Syntax:
• SELECT DISTINCT column_name,column_name FROM table_name;

• ORDER BY Statement
• The ORDER BY keyword is used to sort the result-set

• Syntax:
• SELECT column_name, column_name

FROM table_name
ORDER BY column_name ASC|DESC, column_name ASC|DESC;

More SQL Concepts

• UNION Statement

The UNION operator is used to combine the result-set of two or more SELECT statements.

• Every SELECT statement within UNION must have the same number of columns

• The columns must also have similar data types

• The columns in every SELECT statement must also be in the same order

• Syntax:
• SELECT column_name(s) FROM table1

• UNION

• SELECT column_name(s) FROM table2;

More SQL Concepts

• Functions are used to perform processing on string and numeric data

• Types
• Aggregate

• Return a single value, calculated from values in a column
• Examples: AVG (Average), COUNT, MAX, MIN, SUM

• GROUP BY statements are required when using aggregate functions

• Scalar
• Return a single value, based on the input value

• Examples: ROUND, UCASE (Uppercase), LCASE (Lowercase), FORMAT

SQL Functions

• Subqueries are nested queries (a query within a query)

• They must be enclosed in parentheses

• Subqueries can be included within SELECT, INSERT, UPDATE or DELETE statements

• Example:
• SELECT full_name FROM srm_resources

 WHERE user_id IN (SELECT manager_id FROM srm_resources)

SQL Subqueries

• Write a query to pull all active projects starting in 2018 with a count of their
tasks.

• Use aliases for table names and rename columns to be meaningful
a. Start with a select from the investment table to pull all investments (projects, ideas, other,

etc.)
 select inv.name, inv.code
 from inv_investments inv

b. Add a “WHERE” clause to restrict the result set to active projects only and those that
begin in 2018
 select inv.name, inv.code
 from inv_investments inv
 where inv.odf_object_code = ‘project’
 and inv.is_active = 1
 and inv.schedule_start >= to_char(‘2018-01-01’,’yyyy-mm-dd’)

Query Exercise #2

c. Add a join to the investments table to get the tasks

** Note the join will be a left join as we want all projects and just a count of tasks where they exist
on the project

 select inv.name, inv.code, count(t.prid)

 from inv_investments inv

 left join prtask t ON t.prprojectid = inv.id

 where inv.odf_object_code = ‘project’

 and inv.is_active = 1

 and inv.schedule_start >= to_char(‘2015-01-01’,’yyyy-mm-dd’)

 group by inv.name, inv.code

Query Exercise #2 (cont.)

d. Add column names to make the results meaningful

 select inv.name as “Project Name”, inv.code as “Project ID”, count(t.prid) as “Task Count”

 from inv_investments inv

 left join prtask t ON t.prprojectid = inv.id

 where inv.odf_object_code = ‘project’

 and inv.is_active = 1

 and inv.schedule_start >= to_char(‘2015-01-01’,’yyyy-mm-dd’)

 group by inv.name, inv.code

Query Exercise #2 (cont.)

• SQL can insert records into a database

• SQL can update records in a database

• SQL can delete records from a database

• SQL can create new databases

• SQL can create new tables and views in a database

• SQL can create stored procedures in a database

• SQL can set permissions on tables, procedures, and views

What Else Can SQL Do?

Lookups, Queries and
Portlets

89

• What is a Lookup?
• When attached to a field, a lookup allows users to select pre-defined values from a pull-

down or browse list.

• The lookup field’s choices can be static values entered by an administrator, or dynamic
values returned from a database query.

• Lookups values can be displayed as text or icons.

• 3 Source Types:
• Static List

• Static Dependent List

• Dynamic Query

Lookups

• Static List Lookup
• Use this type of lookup when working with a standard set of values. Static list lookups are

often used as pull-down/browse lists for object fields, portlets/reports, and custom forms.

Lookups – Static List

Pull-Down

Browse

• Create a static list lookup containing the values Yes/No that we can use
later during this training.
• Navigate to Administration → Data Administration → Lookups

• Create a new static list lookup using the below details:
• Name: Yes and No

• Source: Static List

• Values (corresponding id): No (0), Yes (1)

Exercise #1: Static Lookup

• Static Dependent Lookup.

• Use this type of lookup to create a hierarchy of lookups and values.

• Items that appear on the second and subsequent lists depend upon choices
previously made by the user.

• For example, if the user selects “USA” from a country browse list, then a state list
may appear from which the user can select an appropriate state.

Lookups (cont.)

• Dynamic Query Lookup.
• Use this type of lookup to capture data from the Clarity database in real time to populate

the drop-down or browse lists.

• These lookups provide the most up-to-date values possible and are often used inside
browse windows.

• Eliminates the need to maintain a list since the values are dynamically pulled from tables
within the database (e.g., list of all resources).

• Dynamic queries are written in NSQL – more on this in a couple of slides.

Lookups (cont.)

• Create a Dynamic NSQL Query to pull basic information for all investments in the
system.
• Navigate to Administration → Data Administration → Lookups
• Create a new Query using the below details

• Name: All Investments
• Content Source: Dynamic Query
• Query:

SELECT
@SELECT:code:Investment_ID@,
@SELECT:name:Investment_name@
FROM inv_investments
WHERE @FILTER@

• Display Attribute: Investment_name
• Hidden Key: Investment_ID

Exercise #2: Dynamic Query Lookup

• A Query is created and managed in Studio (Administration->Studio->Queries).

• Queries extract data from the system for use in portlets.

• Similar to Dynamic Lookups, Queries are also written in NSQL.

• NSQL is a version of SQL specific Clarity; it is used to designate query segments as
metric values, dimensions, dimension properties, or parameters.

• NSQL can only select data from a database, it cannot update data.

Queries

• The SELECT statement retrieves column data from tables.
• NSQL Queries must start with SELECT however for each column a @SELECT@ tag must be

used

• A dimension is a grouping of similar data elements from one or more tables.
• Defining Dimensions

• <Dimension> is a user-defined name for the dimension
• <Table.Field> is the table or alias name retrieved in the FROM statement
• <label> is the name you want to appear in the column list in clarity

 SELECT
@SELECT:DIM:USER_DEF:IMPLIED:<Dimension>:<Table.Field>:<label>@

• DIM: Indicates the line is the primary key for the dimension
• There can only be one DIM to each dimension.

@SELECT:DIM_PROP:USER_DEF:IMPLIED:<Dimension>:<Table.Field>:<label>@
• DIM_PROP: Indicates columns for the dimension
• There can be many DIM_PROPs defined to one dimension

Queries (cont.)

• The FROM clause is a standard SQL statement which defines which table to
gather data from.

 FROM <Table>

• The WHERE statement filters data returned by a query to be used on portlets.
• The @FILTER@ statement is required and allows the system to filter the values defined with

the @SELECT@ tag
 WHERE <Condition>
 AND @FILTER@

• The GROUP BY clause is typically used to combine database records with
identical values in a specified field into a single record, usually for the purposes of
calculating some sort of aggregate function.

• The syntax for the HAVING statement is @HAVING_FILTER@ which can be used
when a query uses metrics.
• The Developer guide states this is required but it is NOT.

Queries (cont.)

• Create a new Query (nsql) to pull basic investment information.
a. Navigate to Administration → Studio → Queries
b. Create a new Query using the below NSQL statement to extract the data

a. Name: Investment Details Query
b. Query:
 SELECT
 @SELECT:DIM:USER_DEF:IMPLIED:INVESTMENT:code:id@,
 @SELECT:DIM_PROP:USER_DEF:IMPLIED:INVESTMENT:name:name@,
 @SELECT:DIM_PROP:USER_DEF:IMPLIED:INVESTMENT:schedule_start :start_date@,
 @SELECT:DIM_PROP:USER_DEF:IMPLIED:INVESTMENT:schedule_finish :finish_date@,
 @SELECT:DIM_PROP:USER_DEF:IMPLIED:INVESTMENT:is_active :is_active@

 FROM inv_investments

 WHERE @filter@
 HAVING @HAVING_FILTER@

c. Associate the two of the attributes with the two lookups created in the earlier exercises.

Exercise #3: NSQL Query

• NSQL Constructs / Cross Platform
• @BROWSE-ONLY@
• SECURITY –

• @WHERE:SECURITY:ISSUE:i.odf_pk@
• @WHERE:SECURITY:PROJECT:inv.id@

• User and Locale –
• @WHERE:PARAM:USER_ID@
• @WHERE:PARAM:LANGUAGE@
• @WHERE:PARAM:LOCALE@

• Cross Platform / Functions
• @UPPER@, @SYSDATE@, @NVL@, @SUBSTR@, @DBUSER@, @+@
• @COP_DATE_TRUNC_FCT@
• @WHERE:PARAM:USER_ID@
• @COALESCE@

Queries (cont.)

• What is a Portlet?
• Portlets are snapshots of Clarity data and can consist of grids, graphs, or snippets of HTML.

• Portlets do not replace Clarity reports but are often preferred due to ease of use and access.

• Portlets obtain information and business intelligence from Clarity, other databases within
the enterprise, and external sources available in HTML (for example, business news and
network status information).

• Users can populate Portlets with graphs, tables, workflows, best practices, documents, and
forms and have the information update in real-time without running a report.

Portlets

• Chart Portlet – A graphical view of Clarity data (for example, pie and line charts).

• Grid Portlet – A list or table of data you can filter in real time. Can be sourced by Objects or
Queries.

• HTML Portlet – Displays information on a Clarity page from internal or external web sites
formatted as HTML.

• Filter Portlet – Applies a common filter to all Portlets on a page.

• Interactive Portlet – Displays visually rich, real-time Clarity data using imported Xcelsius
visualizations.

Portlet Types

Portlet Data Sources

Query-based (NSQL)
• Portlets created using queries in

Clarity to define the data that can be
used.

• Pros:
• Logic
• Parameters
• Security
• Customizable
• Matrices

• Cons:
• Not Dynamic
• Development Time
• No In-Line Editing

Object-based
• Portlets created using an Object

instead of a query to define the data
set gathered.

• Pros:
• Customizable
• Security
• In-Line Editing
• Dynamic
• Time Scaled Values

• Cons:
• Multiple Objects Difficulty
• No Custom Logic

• Create a portlet that displays basic information for all investments in the system.

• Navigate to Administration -> Studio -> Portlets.

• Create a new Grid Portlet using the below details:
• Name: Investment Details

• Data Provider: Investments Details Query

• List Layout:
• ID, Name, Start Date, Finish Date

• Filter Layout:
• ID, Is Active?

Exercise #4: Basic Grid Portlet

• Use the Manage My Tabs link on the toolbar at the far right to add the portlet to
your home page:

Exercise #4: Basic Grid Portlet (cont.)

Introduction to Workflow
(Processes)

106

• What is a process?
• Processes automate repetitive steps that you would otherwise perform manually

though the user interface.
• To accurately reproduce a user action, the process impersonates the process initiator to

perform the process steps
• A process includes a Start step, a Finish step, and - if desired - any number of steps in

between
• Each step performs one or more actions that move the process toward completion
• Processes use pre- and post-conditions to connect the steps

• Clarity provides stock processes that you can use to:
• Approve documents
• Approve timesheets
• Approve ideas

Processes: Overview

• Process definitions are accessed via the Administration menu:

Processes: Overview (cont.)

• Creating a process involves the following:
• Define the Process properties

• Determine if it will be associated with a Clarity object

• Set Start option

• Determine/Define the number of steps required

• Create Actions

• Create pre- and post-conditions if needed

• Validate the process

• Activate the process

Processes: Design Basics

• Define Process Properties.
• Set the name and ID of the process

• Processes are always created in “Draft” mode (default)

Processes: Design Basics (cont.)

• Associate the process with a Clarity object if:
• The process should be triggered by a user update (or create)

• The process will include system actions, manual actions or sub-processes

• In this example the process is associated with Ideas:

Processes: Design Basics (cont.)

• Set Start option.
• On Demand: process will be kicked off manually or by another process calling that process

• Note: Only a process that is NOT associated with an object can be scheduled by a job

• Auto-Start: process will be kicked off when a user updates or creates an object instance

Processes: Design Basics (cont.)

• Define Process Steps.
• Steps comprise the groups of actions that take place inside a process to accomplish a set of

activities

• Process logic is the Pre-Condition or Post-Condition of each step
• When defining a pre-condition to a step, you can use attributes from objects added to the process

• Pre-conditions will determine whether the step should begin

• After defining the pre-conditions that trigger a step, you must define post-conditions that connect this step
to the next step or the Finish step

• Post-conditions will determine where and whether the step will move

• Examples of pre- and post-conditions include:

• Checking the status of action items

• Checking between object attributes values (except for MVL attributes)

• Waiting for a sub-process to complete before joining the master

Processes: Design Basics (cont.)

• Splits / Joins determine the direction of the process flow
• A Split branches into multiple directions

• A Join brings multiple branches back together

Processes: Design Basics (cont.)

• Rendezvous (AND)

• Merge (XOR)

• Wait and Merge

• Multi-thread

• First in Line

• Serial

• Parallel

• Decision Point

• Multi choice

Join TypesSplit Types

Example of Post-conditions and Split Type:

Processes: Design Basics (cont.)

Example of Pre-condition Join Type:

Processes: Design Basics (cont.)

• A step Action can be one of the following:
• Manual Action

• Example(s): Actions Items
• With manual actions you can include some object data using variables

• System Action
• Example(s): Lock/Unlock Attributes, Set Attribute Values, and certain System Operations (copy a

financial plan from a template)

• Run a Job
• Example(s): Post Timesheets

• Custom Script (run a GEL script)
• Example(s): Notification Scripts

• Subprocess
• Sub processes are invoked as embedded processes within the context of the current process

Processes: Design Basics (cont.)

Example of step Action:

Processes: Design Basics (cont.)

• Validate and Activate Process.
• Use the process validations page to monitor the latest validation statuses and errors at the

step and process level

• Validation rules are used to validate steps and conditions and the structure of a process

Processes: Design Basics (cont.)

1. Create a new process using your initials as an identifier

2. Link the process to the idea object

3. Make the process auto-start on update, with status set to “Submitted for Approval” and prior
status not set to “Submitted for Approval”

4. Create one step in addition to the Start and Finish steps

5. Add an action to the new step that sets the idea status to Approved

6. Add a second action to the new step that sends an action item / notification to the idea
owner that the idea has been approved

7. Once all steps are created, create links between the steps

8. Ensure the conditions point to the correct step

9. Validate and Activate the process

10. Now TRY IT OUT!! ☺

Processes: Exercise

1. Create a new process using your initials as an identifier

2. Link the process to the idea object

3. Make the process auto-start on update, with status set to “Submitted for Approval” and prior
status not set to “Submitted for Approval”

4. Create one step in addition to the Start and Finish steps

5. Add an action to the new step that sets the idea status to Approved

6. Add a second action to the new step that sends an action item / notification to the idea
owner that the idea has been approved

7. Once all steps are created, create links between the steps

8. Ensure the conditions point to the correct step

9. Validate and Activate the process

10. Now TRY IT OUT!! ☺

Processes: Exercise

1. Keep processes as simple as possible

2. Monitor high volume or long running processes

3. Callings jobs and processes should be used carefully

4. Ensure error handling and logs are incorporated when using scripts

Process Don’ts

XOG

123

• Clarity has a Web Services interface called XML Open Gateway (XOG)

• Although REST API is being actively invested on, XOG has functionality that hasn’t
been ported to the REST API

• What XOG Does
• Export/Import data (e.g., Projects, Resources)
• Export/Import configurations (e.g., Lookups, Portlets, Processes)

• Execution Options
• Run XOG Client remotely (from another computer or desktop)
• Run XOG Client from Clarity using HTML portlet (available in RegoXchange)
• Issue XOG request from a GEL script

• Common uses
• Updating large numbers of records
• Moving configurations (or data) from one environment to another
• Making updates that can’t be done via the UI (e.g., locked fields)

XOG: Introduction

• Operating System
• Microsoft Windows XP Pro or later (32 or 64 bit)
• Mac OS X 10.4 or later
• Linux

• Java Runtime Environment (JRE)
• Oracle Java 7 Runtime Environment version 1.7.0_25
• Oracle Java 8 Runtime Environment version 1.8.0

• Clarity

• XOG client version that matching the Clarity

• Clarity user with XOG Global Rights
• Administration – XOG
• Administration – Access
• XOG rights for individual objects (for example, Resource, Project, OBS)

XOG (Remote): Requirements

• Download compatible JRE from http://www.java.com/en/
• Installation folder: C:\jre8\

• Set the environment variables:
• JAVA_HOME=C:\jre8

• PATH=;%JAVA_HOME%\bin

• Test for Java using a command
prompt
• java -version

XOG (Remote): Installation

http://www.java.com/en/

• Download the XOG client from the Admin tool
• Download the cross-platform client

• Extract the ZIP file to C:\xog\

• Test for XOG client using a command
prompt

1. Access C:\xog\bin\ folder

2. Type xog and press enter

3. Type exit to quit

XOG (Remote): Installation - continued

• Use XOG client shell commands to test the connection between the XOG
client and Clarity server as follows:

1. Open a command prompt

2. Type cd C:\xog\bin\ and press enter

3. Type xog (xog -sslenabled true if your connection is using HTTPS) and press enter

4. Type login <username>/<mypassword>@<myserver>:<port> and press enter
For example, if your username was rodmi03, your password was Niku2000, and your CA PPM
instance was https://cppm1234-dev.ondemand.ca.com/niku on port 443, you would type:

login rodmi03/Niku2000@cppm1234-dev.ondemand.ca.com:443

5. Verify login succeeded

XOG (Remote): Verify Connectivity

• The XML files are valid examples of read and write requests that can run
using the XOG client

• There are XML files for each Clarity object you can manipulate with XOG
(for example, Resource, Project, Group)

• XML files come in pairs
• Read (Export)

• Write (Import)

• Access the XML files from the XOG
client installation folder (C:\xog13\xml)

XOG XML Files

• Use the XML Read files to export a specific item from Clarity.

• Each Read XML file contains the following structure:
• Header: Supported Clarity version, Operation (Read), and the object (Resource,

Project, etc.)

• Arguments: The type of information associated to the object to be included in the
export (for example, include tasks and team members for projects)

• Query filters: Limit the export data to (for example, Export only Project-A23 and
Project-B89)

XOG XML Read Files

The Query Filter section supports criteria values to limit the scope of the export
and accepts EQUALS, OR, BETWEEN, AFTER, BEFORE

<Header version="6.0.11" action="read" objectType="project" externalSource="NIKU">
<args name="include_tasks" value="false"/>
<args name="include_resources" value="false"/>

</Header>
<Query>

<Filter name="projectID" criteria="EQUALS">prj123</Filter>
<Filter name="projectID" criteria="OR">prj123,prj244</Filter>

<Filter name="start" criteria="BETWEEN">2007-01-07,2009-01-15</Filter>
</Query>

XOG XML Read Files

• Use the % character as a wildcard
<Filter name="projectID" criteria="EQUALS">prj1%</Filter>

• Alternatively, you can filter objects based on custom attributes created
using Clarity Studio

<FilterByCustomInfo name=“attribute_id" criteria="EQUALS">prj1</FilterByCustomInfo>

• The regular criteria values apply to the Query Filter By Custom section (EQUALS, OR,
BETWEEN, AFTER, BEFORE)

XOG XML Read Files

• You can submit a XOG request using XOG client shell commands:

xog -servername <host> -portnumber <port>
 -username <username> -password <password>
 -input <input filepath> -output <output filepath>

• You can create a .properties file to store the parameters for common XOG
requests
• Use the example .properties file provided with the XOG Client

(C:\xog13\bin\test.properties)
• Store the new .properties file in the bin directory
• Name the file whatever you want (for example, dev.txt, test.txt, prod.txt)
• Use a simple text editor like MS Notepad

XOG (Remote): Properties File

• The following properties are required to make a XOG request
• servername=myserver

• portnumber=80|443

• sslenabled=false|true

• username=myuser

• password=mypassword

• input=../xml/prj_read.xml

• output=../xml/out.xml

XOG (Remote): Properties File

• Submit a XOG Read request using the XOG client as follows
• Create a .properties file with the default values for the XOG parameters

• Create an input XML file with the necessary header information, arguments, and
query filters

• Navigate to the “bin” folder under the XOG client installation folder by typing cd
C:\xog13\bin\ and pressing enter

• Type xog -propertyfile <properties.txt>

• Verify the operation succeeded and check the output file

XOG (Remote): Exercise #1 – Export Data

XOG (Remote): Exercise #1 – Export Data

XOG Commands

• # --- server host name you want to test against

• servername=myserver.ondemand.ca.com

• #portnumber=80

• #default port number for ssl

• portnumber=443

• #set to true if running against a SSL enabled server

• sslenabled=true

• username=myuser

• password=mypassword

• #identify the path to the input and output files

• input=../xml/prj_projects_read.xml

• output=../xml/out.xml

Properties File

XOG: Exercise #1 – Export Data

Input File
<?xml version="1.0" encoding="UTF-8"?>

<NikuDataBus xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../xsd/nikuxog_read.xsd">

<Header version="6.0.11" action="read" objectType="pro ject" externalSource="NIKU">

<!-- you change the order by simply swap 1 and 2 number in the name attribute -->

<args name="order_by_1" value="name"/>

<args name="order_by_2" value="pro jectID"/>

<args name="include_tasks" value="true"/>

<args name="include_dependencies" value="false"/>

<args name="include_subprojects" value="false"/>

<args name="include_resources" value="false"/>

<args name="include_baselines" value="false"/>

<args name="include_allocations" value="false"/>

<args name="include_estimates" value="false"/>

<args name="include_actuals" value="false"/>

<args name="include_custom" value="false"/>

<args name="include_burdening" value="false"/>

</Header>

<Query>

<Filter name="pro jectID" criteria="EQUALS">csk.%</Filter>

</Query>

</NikuDataBus>

XOG: Exercise #1 – Export Data
Output File

• Use the XML Write files to import a specific object into Clarity

• Each Write XML file contains the following structure:
• Header: Supported Clarity version, Operation (Write), object type (Resource,

Project, etc.)

• Body: Data to import

• You can create XML write files manually or by modifying the XML Write file
examples provided with the XOG client or by using the output of an XML
read request

• The output file from a Read response becomes the input file when moving
data from one system to another

XOG: XML Write Files

• XML can be built manually or using a variety of tools including:
• GEL scripts (both remotely and in a process)

• Other programming languages (Perl, Python, JavaScript, etc.)

• MS Mail Merge

• Excel formulas

• 3rd party tools (E.g., Kettle)

XOG: Creating Your Own XML

• XOG will return an error if any required fields are missing

• Remove any other fields that you don’t need

• Required for Resource updates:
• resourceId, externalId, firstName, lastName, emailAddress

• resourceType is not required but generates a warning and “defaults” to LABOR

• employmentType is not required but generates a warning and “defaults” to EMPLOYEE

• Required for Project updates:
• projectID, name

• Field names are case-sensitive!!

XOG: Required Fields

• XML predefines the following five entity references for special characters
that need to be escaped (to prevent them from being considered part of
the markup)

• Use CDATA (<![CDATA[……]]>) to escape special characters like SQL code

XOG: Special Characters

Escaping special characters example:

XOG: Special Characters

<Action code="setInitiator" synchronized="true" type="BPM_SAT_CUSTOM">
 <nls languageCode="en" name="Set Process & Initiator"/>
 <customScript languageCode="gel">
 <scriptText>
 <gel:script xmlns:core="jelly:core"
xmlns:gel="jelly:com.niku.union.gel.GELTagLibrary" xmlns:sql="jelly:sql"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <gel:setDataSource dbId="Niku" var="dataSource"/>
 <sql:update dataSource="${dataSource}"><![CDATA[
 SELECT
 gg_totcost_currency GTC,
 CODE,
 FROM
 ODF_CA_GG_ECOACTIVITY
 WHERE
 id=${gel_objectInstanceId}]]></sql:update>
 </gel:script>
 </scriptText>
 </customScript>
</Action>

Set Financial Status to “Closed” on a project:
<NikuDataBus xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../xsd/nikuxog_project.xsd">

 <Header action="write" externalSource="NIKU" objectType="project" version="8.0"/>

 <Projects>

 <Project financialStatus="C" name="Test Project" projectID="PR123456">

 </Project>

 </Projects>

</NikuDataBus>

Open a Resource for Time Entry:
<NikuDataBus xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../xsd/nikuxog_resource.xsd">

 <Header action="write" externalSource="NIKU" objectType="resource" version="15.9.0.294"/>

 <Resources>

 <Resource employmentType="CONTRACTOR" externalId=" " resourceId="ABC2436" resourceType="LABOR">

 <PersonalInformation emailAddress="dave.lord@regoconsulting.com" firstName="Dave" lastName="Lord"/>

 <ManagementInformation availability="8" openForTimeEntry="false"/>

 </Resource>

 </Resources>

</NikuDataBus>

XOG (UI Client): Exercise #2

• The UI Client can be difficult to troubleshoot as some issues do not generate
an error, but instead simply cause the HTML portlet to hang

• Some common scenarios that hang the XOG Client portlet:
• Missing tags

• Malformed XML, syntax errors

• Un-escaped special characters (common ones are & and “)

• A large XOG request (hundreds of records) can take a long time to complete,
and the UI Client does not indicate progress and can appear to be hung

• Do not run large XOG requests during business hours as it can impact
performance

XOG (UI Client): Common Issues

• Submit a XOG Write request using the XOG client as follows
• Create a .properties file with the default values for the XOG parameters

• Create an input XML file with the necessary header and import data

• Navigate to the XOG client installation “bin” folder by typing cd C:\xog13\bin\ and
pressing enter

• Type xog -propertyfile <properties.txt> and press enter

• Verify the operation succeeded and check the output file

XOG (Remote): Exercise #3 – Import Data

XOG (Remote): Exercise #3 – Import Data

• # --- server host name you want to test against
• servername=myserver.ondemand.ca.com

• #portnumber=80

• #default port number for ssl
• portnumber=443

• #set to true if running against a SSL enabled server
• sslenabled=true

• username=myuser
• password=mypassword

• #identify the path to the input and output files
• input=../xml/groups_write_allRights.xml
• output=../xml/out.xml

• <NikuDataBus

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="../xsd/nikuxog_group.xs
d">

• <Header action="write" externalSource="NIKU"
objectType="group" version="7.5"/>
• <groups>

• <group code="rodmi03.AllRights" isActive="true">
• <nls languageCode="en" name="All Rights"/>

• <members>
• <resource userName="admin"/>

• </members>

• <rights>
• <GlobalRights/>

• <InstanceRights/>
• <InstanceOBSRights/>

• </rights>

• </group>
• </groups>

• </NikuDataBus>

Input FileProperties File

XOG (Remote): Exercise #3 – Import Data

• <XOGOutput xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="../xsd/status.xsd">

• <Object type="group"/>

• <Status elapsedTime="1.079 seconds" state="SUCCESS"/>

• <Statistics failureRecords="0" insertedRecords="1" totalNumberOfRecords="1" updatedRecords="0"/>

• <Records/>

• </XOGOutput>

Output File

XOG Commands

XOG: Common Errors

Error Description

Login Failed Verify username and password are correct by accessing
Clarity with the same credentials.

No valid input file specified Verify the file and directory indicated in the input parameter
are valid.

Unexpected end of file from
server

Check to see if the connection uses SSL (Clarity URL begins
with https://). If the connection uses SSL, set the sslenabled
parameter to true.

Failed to retrieve response
document
java.io.FileNotFoundException:

Verify the directory indicated in the output parameter exists.

HTTP Error: Status-Code 504:
Gateway Timeout

The XOG Client cannot connect to the Clarity server.
Verify the connection port and test connectivity.

[Fatal Error] :5:47: The entity
name must immediately follow
the '&' in the entity reference.

Make sure you have escaped all special characters.

[Fatal Error] :6:14: Verify there are no syntax errors in the XML file.

• Use an XML Editor that supports color syntax highlighting, UNICODE, verification,
and validation of XML files
• Altova XMLSpy (License)
• Notepad ++ (Open Source)
• XML Pad (Freeware)
• XML Copy Editor (Open Source)
• FOXE (Freeware)

• Use the XML files from the installation folder of the XOG client as a baseline to
create your own XML files

• Verify XML file syntax is correct and validate the XML files against the object
schema before running XOG

• Make sure the Clarity server and XOG client versions match
• Other tools like Postman can also be used to interact with XOG

XOG: Best Practices

REST API

151

• Representational State Transfer

• Architectural principals to define a web service organized around Resources
(URIs)

• Primary message format is JSON

• Future of Clarity web services

• MUX is built entirely on REST

• Simpler to use than SOAP

• More granular

REST: Introduction

• Use
• Create, update, or delete targeted data within Clarity

• To update data within GEL scripts

• Update data in another application

• To update CITs (cannot use XOG)

• Do Not / Cannot Use
• Studio Configuration – Still requires XOG

• Not all objects are REST enabled

• Pull large volumes of data from Clarity
• Data Extracts

• Pull data to a Data Warehouse

REST: When to use

• View REST resources: Administration -> System Options

• Describe and test endpoints

REST: Describe

• No GEL tags to support REST (ie: Xog -> soapInvoke)

• Functionality still catching up with XOG i.e. Financials, Users, Resources,
etc.

• Have to code using java
• Java URLConnection

• Apache HTTP Libraries

REST: Challenges

• Check out the presentation from Ben and James "Using REST APIs"

• Broadcom documentation - https://techdocs.broadcom.com/us/en/ca-
enterprise-software/business-management/clarity-project-and-portfolio-
management-ppm-on-premise/16-0-1/reference/Clarity-REST-APIs/rest-
api-documentation-for-authorized-developers.html

• Postman - https://www.postman.com

• GSON - https://github.com/google/gson/blob/master/UserGuide.md

REST: More Details

https://techdocs.broadcom.com/us/en/ca-enterprise-software/business-management/clarity-project-and-portfolio-management-ppm-on-premise/16-0-1/reference/Clarity-REST-APIs/rest-api-documentation-for-authorized-developers.html
https://techdocs.broadcom.com/us/en/ca-enterprise-software/business-management/clarity-project-and-portfolio-management-ppm-on-premise/16-0-1/reference/Clarity-REST-APIs/rest-api-documentation-for-authorized-developers.html
https://techdocs.broadcom.com/us/en/ca-enterprise-software/business-management/clarity-project-and-portfolio-management-ppm-on-premise/16-0-1/reference/Clarity-REST-APIs/rest-api-documentation-for-authorized-developers.html
https://techdocs.broadcom.com/us/en/ca-enterprise-software/business-management/clarity-project-and-portfolio-management-ppm-on-premise/16-0-1/reference/Clarity-REST-APIs/rest-api-documentation-for-authorized-developers.html
https://www.postman.com/
https://github.com/google/gson/blob/master/UserGuide.md

Surveys

Let Rego be your guide.

157

Please take a few moments to fill out the class survey.
Your feedback is extremely important for future events.

158

Questions?

Instructions for PMI credits
• Access your account at pmi.org

• Click on Certifications

• Click on Maintain My Certification

• Click on Visit CCR’s button under the Report PDU’s

• Click on Report PDU’s

• Click on Course or Training

• Class Provider = Rego Consulting

• Class Name = regoUniversity

• Course Description

• Date Started = Today’s Date

• Date Completed = Today’s Date

• Hours Completed = 1 PDU per hour of class time

• Training classes = Technical

• Click on I agree and Submit

Let Rego be your guide.

159

Thank You For Attending Rego University

Phone
888.813.0444

Email
info@regoconsulting.com

Website
www.regouniversity.com

Let us know how we can improve!
Don’t forget to fill out the class survey.

mailto:info@regoconsulting.com
http://www.regoconsulting.com/

	Slide 1
	Slide 2: Agenda
	Slide 3: Introduction
	Slide 5: Objects, Attributes and Views/Fields
	Slide 6: Clarity Studio
	Slide 7: Objects
	Slide 8: Objects (continued)
	Slide 9: Objects: Types
	Slide 10: Objects: Investment Object
	Slide 11: Attributes
	Slide 12: Attribute Data Types
	Slide 13: Calculated Attributes
	Slide 14: Attributes: Auto-Numbering
	Slide 15: Attributes: Exercise
	Slide 16: Attributes: Exercise (cont.)
	Slide 17: Attributes: Exercise (cont.)
	Slide 18: Attributes: Exercise (cont.)
	Slide 19: Attributes: Exercise (cont.)
	Slide 20: Attributes: Exercise (cont.)
	Slide 21: Attributes: Exercise (cont.)
	Slide 22: Fields and Views
	Slide 23: Fields: Adding to a Screen
	Slide 24: Fields: Adding to a List
	Slide 25: Fields: List Options
	Slide 26: Fields: Exercise
	Slide 27: Fields: Exercise (cont.)
	Slide 28: Fields: Exercise (cont.)
	Slide 29: Fields: Exercise (cont.)
	Slide 30: Fields: Exercise (cont.)
	Slide 31: Actions
	Slide 32: Studio and Modern UX
	Slide 33: Administration in the Modern UX
	Slide 34: Enabling Attributes for the Modern UX
	Slide 35: Basic Components Modern UX
	Slide 36: Configure Modules
	Slide 37: Blueprints Overview
	Slide 38: Configuring Blueprints
	Slide 39: Navigation
	Slide 40: Blueprint List View
	Slide 41: Blueprint List View cont.
	Slide 42: Properties
	Slide 43: Properties
	Slide 44: Properties cont.
	Slide 45: Visuals (Projects Only)
	Slide 46: Modules
	Slide 47: Modules – Channels
	Slide 48: Modules – Canvas
	Slide 49: Modules – Custom Sub-Objects
	Slide 50: Rules Engine
	Slide 51: Rules Engine
	Slide 52: Attributes - Field Level Security
	Slide 53: Attributes - Investment Parents 
	Slide 54: Pages and Dashboards
	Slide 55: User Personalizations - Views
	Slide 56: Saving Views and Filters (1)
	Slide 57: Saving Views and Filters (2)
	Slide 58: Saving Views and Filters (3)
	Slide 59: Saving Views and Filters (4)
	Slide 60: Notes on Saved Views
	Slide 61: User Personalizations - Picklists
	Slide 62: What are Picklists?
	Slide 63: Creating a Picklist
	Slide 64: Creating a Picklist
	Slide 65: Creating a Picklist
	Slide 66: Creating a Picklist
	Slide 67: Introduction to SQL
	Slide 68: What Is SQL?
	Slide 69: What Is a Database?
	Slide 70: Using SQL in Clarity
	Slide 71: Basic SQL Syntax
	Slide 72: Basic SQL Syntax (cont.)
	Slide 73: Basic SQL Syntax (cont.)
	Slide 74: Query Exercise #1
	Slide 75: SQL Aliases
	Slide 76: SQL Column Names
	Slide 77: SQL Joins
	Slide 78: SQL Joins
	Slide 79: SQL Joins
	Slide 80: SQL Joins
	Slide 81: More SQL Concepts
	Slide 82: More SQL Concepts
	Slide 83: SQL Functions
	Slide 84: SQL Subqueries
	Slide 85: Query Exercise #2
	Slide 86: Query Exercise #2 (cont.)
	Slide 87: Query Exercise #2 (cont.)
	Slide 88: What Else Can SQL Do?
	Slide 89: Lookups, Queries and Portlets
	Slide 90: Lookups
	Slide 91: Lookups – Static List
	Slide 92: Exercise #1: Static Lookup
	Slide 93: Lookups (cont.)
	Slide 94: Lookups (cont.)
	Slide 95: Exercise #2: Dynamic Query Lookup
	Slide 96: Queries
	Slide 97: Queries (cont.)
	Slide 98: Queries (cont.)
	Slide 99: Exercise #3: NSQL Query
	Slide 100: Queries (cont.)
	Slide 101: Portlets
	Slide 102: Portlet Types
	Slide 103: Portlet Data Sources
	Slide 104: Exercise #4: Basic Grid Portlet
	Slide 105: Exercise #4: Basic Grid Portlet (cont.)
	Slide 106: Introduction to Workflow (Processes)
	Slide 107: Processes: Overview
	Slide 108: Processes: Overview (cont.)
	Slide 109: Processes: Design Basics
	Slide 110: Processes: Design Basics (cont.)
	Slide 111: Processes: Design Basics (cont.)
	Slide 112: Processes: Design Basics (cont.)
	Slide 113: Processes: Design Basics (cont.)
	Slide 114: Processes: Design Basics (cont.)
	Slide 115: Processes: Design Basics (cont.)
	Slide 116: Processes: Design Basics (cont.)
	Slide 117: Processes: Design Basics (cont.)
	Slide 118: Processes: Design Basics (cont.)
	Slide 119: Processes: Design Basics (cont.)
	Slide 120: Processes: Exercise
	Slide 121: Processes: Exercise
	Slide 122: Process Don’ts
	Slide 123: XOG
	Slide 124: XOG: Introduction
	Slide 125: XOG (Remote): Requirements
	Slide 126: XOG (Remote): Installation
	Slide 127: XOG (Remote): Installation - continued
	Slide 128: XOG (Remote): Verify Connectivity
	Slide 129: XOG XML Files
	Slide 130: XOG XML Read Files
	Slide 131: XOG XML Read Files
	Slide 132: XOG XML Read Files
	Slide 133: XOG (Remote): Properties File
	Slide 134: XOG (Remote): Properties File
	Slide 135: XOG (Remote): Exercise #1 – Export Data
	Slide 136: XOG (Remote): Exercise #1 – Export Data
	Slide 137: XOG: Exercise #1 – Export Data
	Slide 138: XOG: Exercise #1 – Export Data
	Slide 139: XOG: XML Write Files
	Slide 140: XOG: Creating Your Own XML
	Slide 141: XOG: Required Fields
	Slide 142: XOG: Special Characters
	Slide 143: XOG: Special Characters
	Slide 144: XOG (UI Client): Exercise #2
	Slide 145: XOG (UI Client): Common Issues
	Slide 146: XOG (Remote): Exercise #3 – Import Data
	Slide 147: XOG (Remote): Exercise #3 – Import Data
	Slide 148: XOG (Remote): Exercise #3 – Import Data
	Slide 149: XOG: Common Errors
	Slide 150: XOG: Best Practices
	Slide 151: REST API
	Slide 152: REST: Introduction
	Slide 153: REST: When to use
	Slide 154: REST: Describe
	Slide 155: REST: Challenges
	Slide 156: REST: More Details
	Slide 157: Surveys
	Slide 158
	Slide 159: Thank You For Attending Rego University

